首页> 外文OA文献 >Exploiting Low-dimensional Structures to Enhance DNN Based Acoustic Modeling in Speech Recognition
【2h】

Exploiting Low-dimensional Structures to Enhance DNN Based Acoustic Modeling in Speech Recognition

机译:利用低维结构增强基于DNN的声学   语音识别中的建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose to model the acoustic space of deep neural network (DNN)class-conditional posterior probabilities as a union of low-dimensionalsubspaces. To that end, the training posteriors are used for dictionarylearning and sparse coding. Sparse representation of the test posteriors usingthis dictionary enables projection to the space of training data. Relying onthe fact that the intrinsic dimensions of the posterior subspaces are indeedvery small and the matrix of all posteriors belonging to a class has a very lowrank, we demonstrate how low-dimensional structures enable further enhancementof the posteriors and rectify the spurious errors due to mismatch conditions.The enhanced acoustic modeling method leads to improvements in continuousspeech recognition task using hybrid DNN-HMM (hidden Markov model) framework inboth clean and noisy conditions, where upto 15.4% relative reduction in worderror rate (WER) is achieved.
机译:我们建议将深度神经网络(DNN)类条件后验概率的声学空间建模为低维子空间的并集。为此,培训后代用于字典学习和稀疏编码。使用该词典对测试后代的稀疏表示可以投影到训练数据的空间。依靠后子空间的内在尺寸确实非常小并且属于一个类的所有后代矩阵的秩很低这一事实,我们证明了低维结构如何使后代进一步增强并纠正由于不匹配条件导致的虚假错误增强的声学建模方法在干净和嘈杂的条件下使用混合DNN-HMM(隐马尔可夫模型)框架改进了连续语音识别任务,在此条件下,词错误率(WER)相对降低了15.4%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号